Intranasal delivery of Mesenchymal Stem Cells provides hope for treating Alzheimer’s disease

Friday 05 June 2020
New study, led by Silvia Coco Ph.D at School of Medicine and Surgery, published on STEM CELLS Translational Medicine
Image
alzheimer

Milan, June 05th 2020 – online peer-reviewed publication

In the search for a cure for Alzheimer's disease, mesenchymal stem cells and their derived extracellular vesicles (MSC-EVs) offer much promise, thanks to their protective and anti-inflammatory properties. The results from a new study done on mice, released today in STEM CELLS Translational Medicine, strengthens this idea by showing for the first time that MSC-EVs delivered by way of the nasal passages reduce inflammation – believed to be a prime factor in Alzheimer’s disease. They also trigger actions that guard the brain’s neurons against further degenerative effects. 

The study, led by Silvia Coco, Ph.D., at the University of Milano-Bicocca, School of Medicine and Surgery lays the foundation for future studies that might point the way to a cure for this devastating disease. 

Alzheimer's is an irreversible degeneration of the brain that causes disruptions in memory, cognition, personality and other functions that eventually lead to death. Worldwide, 50 million people are believed to be living with Alzheimer's or other dementias, according to a 2018 report by Alzheimer’s Disease International, with the cost of care estimated at over US $1 trillion. 

While abnormal protein buildups in the brain called amyloid plaques are thought to play a central role in Alzheimer's disease, mounting evidence suggests that inflammation is key to its development, too. This raises the need to target the brain’s immune cells as a way to slow down the disease’s progression. 

MSC-EVs’ beneficial effects in regulating inflammation seen in Alzheimer’s have already been reported in some different studies on mice. This is due to the ability of MSCs to modulate the body’s immune system, which in turn is believed to result from the release of EVs. These nanosized, membrane-bound vesicles transport cargo — including DNA, RNA, and proteins — between cells as a form of intercellular communication. They also are thought to rid the cell of damaging substances. 

We believe that the striking aspect of our study resides in the fact that the observed effects were achieved by only two intranasal injections of MSC-EVs delivered just hours apart,” Dr. Coco said. “This might possibly have occurred because EVs delivered intranasally could reach higher levels than those delivered by other methods.” 

"There are several important findings from this study. In the attempt to find a possible cure for Alzheimer's disease, mesenchymal stem cells and their derived extracellular vesicles are being investigated for therapeutic purposes thanks to their protective and anti-inflammatory properties," said Anthony Atala, MD, Editor-in-Chief of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. "The results from this study present an opportunity for potentially effective therapies to be tested by human pilot clinical trials. This work is worthy to progress forward."

a cura di Redazione Centrale, ultimo aggiornamento il 05/06/2020