
TABLINO POSSIO CRISTINA
- U05, Floor: 3, Room: 3064
Publications
Adriani, A., Sormani, R., Tablino Possio, C., Krause, R., Serra-Capizzano, S. (2025). Asymptotic spectral properties and preconditioning of an approximated nonlocal Helmholtz equation with fractional Laplacian and variable coefficient wave number μ. LINEAR ALGEBRA AND ITS APPLICATIONS, 708(1 March 2025), 551-584 [10.1016/j.laa.2024.12.015]. Detail
Adriani, A., Serra-Capizzano, S., Tablino Possio, C. (2024). Clustering/Distribution Analysis and Preconditioned Krylov Solvers for the Approximated Helmholtz Equation and Fractional Laplacian in the Case of Complex-Valued, Unbounded Variable Coefficient Wave Number μ. ALGORITHMS, 17(3) [10.3390/a17030100]. Detail
Serra-Capizzano, S., Sormani, R., Tablino Possio, C. (2024). Two-Dimensional Semi-linear Riesz Space Fractional Diffusion Equations in Convex Domains: GLT Spectral Analysis and Multigrid Solvers. In Large-Scale Scientific Computations
14th International Conference, LSSC 2023, Sozopol, Bulgaria, June 5–9, 2023, Revised Selected Papers
Conference proceedings (pp.52-60). Springer Science and Business Media Deutschland GmbH [10.1007/978-3-031-56208-2_4]. DetailBogoya, M., Grudsky, S., Serra–capizzano, S., Tablino Possio, C. (2022). Fine spectral estimates with applications to the optimally fast solution of large FDE linear systems. BIT, 62(4), 1417-1431 [10.1007/s10543-022-00916-0]. Detail
Nguyen, Q., Serra-Capizzano, S., Tablino Possio, C., Wadbro, E. (2022). Spectral analysis of the finite element matrices approximating 2D linearly elastic structures and multigrid proposals. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 29(4) [10.1002/nla.2433]. Detail