# **Dr Alessandro Minotto**

#### Junior Assistant Professor (RTDa)

SC 02/B1 - SSD FIS/01 - Experimental physics

University of Milano-Bicocca, Dept. of Materials Science via R. Cozzi 55, I-20125 Milan

tel: +39 02 6448 5192 (office) // +39 02 6448 5025 (lab)

email: alessandro.minotto@unimib.it

webex: https://unimib.webex.com/meet/alessandro.minotto

#### **RESEARCH INTERESTS**

Materials science, nanotechnology. Organic semiconductors, organic electronics & optoelectronics. Organic thin films growth, molecular crystals. Spectroscopy. Hybrid organic/inorganic semiconductors, colloidal quantum dots. Device fabrication & physics.

# RESEARCH EXPERIENCE

#### RTDa – Junior Assistant Professor

(Dec 2021 - Present)

University of Milano-Bicocca, Dept. of Materials Science - Milan, IT

Research activity:

- Growth via organic molecular beam epitaxy & characterization of molecular thin films.
- Development of a method for transfer printing of molecular thin films for integration in devices.
- Evaluation of the singlet exciton fission and triplet exciton fusion efficiency in molecular thin films.

### • (Non-Academic) Senior Researcher

(Feb 2020 - Sept 2021)

Sharp Laboratories of Europe Ltd - Oxford, UK

R&D of (Colloidal) Quantum Dot LEDs for Display Applications.

- Developed a high-yield and & cost-efficient photolithographic method for the fabrication of QD LEDs.
- Filed 4 patent applications: 1 patent granted, 2 published under examination, 1 pending publication.
- Lab manager: staff supervision, new user training, risk-assessments, maintenance.

#### Postdoctoral Researcher

(Oct 2017 - Jan 2020)

University College London (UCL), Dept. of Physics and Astronomy - London, UK

- Funded by the EPSRC project "Multi-functional Polymer LEDs with Visible Light Communications" (MARVEL, EP/P006280/1). Advisor: Professor F. Cacialli.
- Materials photo-physical evaluation, OLED fabrication, characterization, and VLC-link prototyping.
- Demonstrated world record VLC transmission rates using solution processed OLEDs.
- Lab manager: staff & students lab supervision, new user training, risk-assessments, maintenance.

#### Marie Skłodowska-Curie Trainee

(Oct 2014 - Sept 2017)

London Centre for Nanotechnology (LCN-UCL) - London, UK

- Early Stage Researcher (ESR) in the Marie Skłodowska-Curie ITN for "Organic Semiconductors for NIR Optoelectronics" (OSNIRO, 607585). Advisor: Professor F. Cacialli.
- Demonstrated unprecedented efficiencies from NIR OLEDs based on novel fluorescent emitters.
- Training secondments at
  - o May-Jun 2015: TU/e, Eindhoven, NE Organic solar cell fabrication/characterization;
  - o Mar 2016: Siemens AG, Erlangen, DE Organic photodetector fabrication/characterization;
  - o Dec 2016: FAU, Erlangen, DE Photoinduced absorption spectroscopy.

#### PhD candidate in Materials Science and Engineering

(Jan 2012 - Dec 2014)

Università degli Studi di Padova, Dipartimento di Scienze Chimiche - Padova, IT

- Supervisors: Professor R. Signorini and Professor R. Bozio.
- Thesis: "Characterization of CdSe-Cd<sub>x</sub>Zn<sub>1-x</sub>S core-shell quantum dots as active materials for compact micro-cavity lasers".
- Demonstration that Raman spectroscopy can be used to detect structural defects in colloidal QDs.
- Development of a new photo-physical kinetic model for the light emission of QDs.

### **GRANTS & PROJECT ACTIVITY**

- Grant awarded @ UNIMIB: P.I. of the project "Singlet exCltoN fission in crysTallIne moLecuLAr thin films for enhanced silicon photovoltaics" (SCINTILLA, project 2022SCWMT2) PRIN 2022, funded by the Italian Ministry of University and Research. Expected kick-off in Jan 2024.
- 2017-2020, @ UCL: Research associate in the UK EPSRC project "Multi-functional Polymer LEDs with Visible Light Communications" (MARVEL, project EP/P006280/1). Unit leader: Prof. F. Cacialli.
- 2015-2017, @ UCL: Early stage researcher (ESR) in the Marie Skłodowska-Curie ITN "Organic Semiconductors for NIR Optoelectronics" (OSNIRO, 607585). Unit leader: Prof. F. Cacialli.
- 2014, @ UNIPD: Participant (PhD student) in the PRIN 2012 *Nuovi aspetti del trasferimento di energia risonante in mezzi organizzati: effetti dinamici e controllo ottico* (project 2012T9XHH7). P.I.: Prof. R. Bozio.

### **ACADEMIC TRACK RECORD**

- In January 2022, he obtained the "Abilitazione Scientifica" for the position of Associate Professor in the disciplinary field 02/B1 Experimental physics of matter.
- Publications and metrics (full list attached below):
  - Google Scholar: <a href="https://scholar.google.com/citations?user=W0zdA58AAAAJ&hl=en&oi=ao">https://scholar.google.com/citations?user=W0zdA58AAAAJ&hl=en&oi=ao</a> ORCID: <a href="https://orcid.org/0000-0002-6731-3162">https://orcid.org/0000-0002-6731-3162</a> Scopus: <a href="https://www.scopus.com/authid/detail.uri?authorld=55840747800">https://www.scopus.com/authid/detail.uri?authorld=55840747800</a>
  - Top journals (IF > 15): Advanced Materials, Advanced Functional Materials, Light: Science & Applications (x2), ACS Nano, Angewandte Chemie.
- Invited editorial in Nature Photonics (2022 IF = 35): "News & Views", Nat. Photon. 16, 812 (2022).
- Reviewer for: Nature Photonics (Springer Nature); Light: Science & Applications (Springer Nature); Journal of Materials Chemistry C (RSC), Journal of Luminescence (Elsevier).
- Presenter at international conferences/schools (9 orals + 8 posters, 1 invited, full list attached below).

# **TEACHING EXPERIENCE**

• Teacher – Materials Science and Nanotechnology MSc University of Milano-Bicocca, Dept. of Materials Science – Milan, IT

Will teach a 40 hours/year module of the "Physics of Soft Matter Nanostructures" course (40 hours/year).

• Laboratory teacher – Materials Science BSc University of Milano-Bicocca, Dept. of Materials Science – Milan, IT (Sep 2022 – Present)

Teaching the "Laboratory of Physics I" course (40 hours/year).

Laboratory teacher – Optics and Optometry BSc
 University of Milano-Bicocca, Dept. of Materials Science – Milan, IT

(Nov 2021 - Present)

Teaching the laboratory module of "Geometric and Ophthalmic Optics and Laboratory" (24 hours/year).

Thesis supervisor
 University of Milano-Bicocca, Dept. of Materials Science – Milan, IT

(Dec 2021 – Present)

Supervision of 3 students during their thesis project.

- Riccardo Ribolzi (Materials Science BSc co-supervisor): "Crescita e proprietà ottiche di film sottili di un benzotiadiazolo sostituito", 2021-2022.
- Matteo Paoluzzi (Materials Science BSc co-supervisor): "Crescita e proprietà ottiche di film sottili di materiali molecolari organici", 2022-2023 (ongoing).
- Ilaria Lameri (Physics MSc co-supervisor): "Crescita e studio della fotofisica di film sottili molecolari organici per "singlet fission"", 2023-2024 (starting in July 2023).

#### Marker and thesis supervisor

(Oct 2015 - Sep 2019)

University College London (UCL), Dept. of Physics and Astronomy - London, UK

Supervision of 6 students during their thesis project. For UCL students, supervision included also marking of progress reports, research essays, thesis, and final oral presentations.

- Luis Aurnhammer (Physics MSc – co-supervisor): "Photophysical Properties of Near-infrared Porphyrin Oligomers", 2015-2017 (part-time student).

- Simone Poddi (guest student from Politecnico di Torino, Electrical Engineering MSc UCL advisor and laboratory supervisor):
   "Fabrication and characterization of organic light-emitting diodes based on aggregation-induced emission fluorophores", 2016-2017:
  - o 1 paper from this thesis: Baysec, Poddi, Minotto et al. Science China Chemistry 61, 932–939 (2018).
- Peter Aruffo (Physics MSci co-supervisor): "Flexible all-polymer microcavities", 2017-2018.
- Adil Patel (Physics MSc co-supervisor): "Time-correlated single photon counting of radiative decay of organic semiconductors and other related nanostructures", 2018-2019;
  - 1 paper from this thesis: Royakkers, Patel, Minotto et al. J. Org. Chem. 85, 207–214 (2020).
- Ali Khaled Saad Zaghloul Hassan (Physics MSc co-supervisor): "Optoelectronic characterization of novel encapsulated conjugated polymers", 2018-2019;
  - 1 paper from this thesis: Royakkers, Hassan, Minotto et al. Chem. Mater. 32, 10140–10145 (2020).
- Isaac Squires (Physics MSc co-supervisor): "Excitonic solar cells and photovoltaic processes in organic semiconductors", 2018-2019.
- Laboratory assistant Laurea magistrale in Scienze dei Materiali (Oct 2012 Jun 2014) Università degli Studi di Padova, Dipartimento di Scienze Chimiche – Padova, IT

Training and assistance of Materials Science master students during the "Materials preparation and characterization" teaching lab course (25 hours/year).

• Tutor – Lauree Triennali in Scienza dei Materiali e Chimica (Oct 2012 – Jun 2014) Università degli Studi di Padova, Dipartimento di Scienze Chimiche – Padova, IT

Support to students attending the "Mathematics I" (Mathematical analysis) and "Physics I" (Classical mechanics) courses by organising group sessions of problem-solving tutorials (25 hours/year).

### **OTHER ACADEMIC ROLES**

- May 2023 present: Member of the panel for the selection procedures for curricular teaching & tutoring activities at the Department of Materials Science for the academic year 2023/2024.
- Sep 2022 present: member of the committee for prospective Material Science and Nanotechnology student orientation activities (including presentations and demonstrations at university/faculty open days, high schools).
- Mar 2022: PhD external examiner:
  - PhD Candidate: Liliana Moscardi. Degree of Doctor of Philosophy in Physics. Politecnico di Milano.
     Thesis Title: "Metal oxide nanoparticles based distributed Bragg reflectors for electro and bacterial-chromism".

#### **EDUCATION**

- Dottorato di Ricerca in Scienza ed Ingegneria dei Materiali
   Università degli Studi di Padova, Dipartimento di Scienze Chimiche Padova, IT
- Laurea Magistrale in Scienza dei Materiali
   Università degli Studi di Padova / 6-month Erasmus at Aarhus University (Denmark)
   Grade: 110/110 cum laude
- Laurea Triennale in Scienza dei Materiali (2005 2009)
  Università degli Studi di Padova
- Additional advanced courses & workshops

As ESR (organised and/or funded the OSNIRO network):

- 25-26 Sep 2014: Chalmers Uni, Gothenburg, SE Synthesis & Characterization of Conjugated Materials for NIR Applications;
- 24-26 Feb 2015: Berlin, DE 7<sup>th</sup> European Short Course on Time-resolved Microscopy and Correlation Spectroscopy;
- 24 Apr 2015: Siemens AG, Erlangen, DE Academia meets Industry: Similarities & Differences;
- 1 Mar 2016: UCL, London, UK From Intellectual Property Protection to Technology Transfer with the Aid of Venture Capital;
- 13-15 Mar 2017: Wuppertal, DE Conference Presentation: Communicating with Confidence & Accuracy // Academic Writing.
- 21-22 Jun 2022: UNIMIB, Milan, IT "Didattica per la grande aula" course, organised by the University of Milano-Bicocca.

### **SKILLS & LANGUAGES**

- Crystalline thin film growth & treatment: Organic Molecular Beam Epitaxy, substrate transfer.
- **Spectroscopy**: Uv-Vis-NIR (transmission/reflectance), polarization spectroscopy, diffuse transmission and reflectance, FTIR, Raman, SERS, steady-state and transient absorption/photoluminescence.
- Microscopy: AFM, optical microscopes (fluorescence confocal mode, optical profilometry), SEM.
- **Device fabrication**: Thin film deposition via solution processing (spin, blade, spray coating) and vacuum processing (thermal evaporation of molecular and metallic thin films), cleanroom-based fabrication tools and techniques (substrate treatments, photolithography).

- **Device characterization**: OLED and QD-LED (steady-state and transient electroluminescence, IV, efficiency, stability), solar cells (IV, efficiency).
- IT: macOS, Windows, Linux, MATLAB, Origin, LabVIEW, Office, image processing packages (including Adobe, Inkscape, Gwyddion).
- Languages: Italian (native), English (fluent, written and spoken).

### **PUBLICATIONS**

(H-INDEX = 15, CITATIONS = 1130 / 927 (Google Scholar / Scopus, as of 24/07/2023)

- F. Todescato, <u>A. Minotto</u>, R. Signorini, J.J. Jasieniak, R. Bozio
   "Investigation into the Heterostructure Interface of CdSe-Based Core-Shell Quantum Dots Using Surface-Enhanced Raman Spectroscopy"
  - ACS Nano 7, 6649–6657 (2013) <a href="https://doi.org/10.1021/nn402022z">https://doi.org/10.1021/nn402022z</a> IF = 17.1 (2022)

    A. Minotto, F. Todescato, I. Fortunati, R. Signorini, J.J. Jasieniak, R. Bozio
- A. Minotto, F. Todescato, I. Fortunati, R. Signorini, J.J. Jasieniak, R. Bozio
  "Role of Core–Shell Interfaces on Exciton Recombination in CdSe–CdxZn1–x S Quantum Dots"

  Journal of Physical Chemistry C 118, 24117–24126 (2014) https://doi.org/10.1021/jp506778n IF = 3.7 (2022)
- 3. <u>A. Minotto</u>, F. Todescato, R. Signorini, J.J. Jasieniak, R. Bozio "Influence of core-shell interfaces on exciton and multi-exciton dynamics of CdSe-CdxZn1-xS quantum dots" *Proc. SPIE 9161, Nanophotonic Materials XI*, 916103 (2014) Proceeding
- A. Zampetti, <u>A. Minotto</u>, F. Cacialli, A.G. Rodríguez, S. Allard, U. Scherf
  "Low-gap polymers incorporating a dicarboxylic imide moiety for near-infrared polymer light-emitting diodes" *IEEE International Conference on Environment and Electrical Engineering* (2015) Proceeding
- M. Righetto, <u>A. Minotto</u>, R. Bozio "Exciton and multi-exciton dynamics in CdSe/Cd1-xZnxS quantum dots" *Proc. SPIE 9884, Nanophotonics VI*, 988421 (2016) – Proceeding
- 6. <u>REVIEW</u> F. Todescato, I. Fortunati, <u>A. Minotto</u>, R. Signorini, J.J. Jasieniak, R. Bozio "Engineering of Semiconductor Nanocrystals for Light Emitting Applications" *Materials* 9, 672 (2016) – <a href="https://doi.org/10.3390/ma9080672">https://doi.org/10.3390/ma9080672</a> - IF = 3.4 (2022)
- 7. D.M.E. Freeman, <u>A. Minotto</u>, W. Duffy, K.J. Fallon, I. McCulloch, F. Cacialli, H. Bronstein "Highly red-shifted NIR emission from a novel anthracene conjugated polymer backbone containing Pt (II) porphyrins"
  - Polymer Chemistry 7, 722-730 (2016) <a href="https://doi.org/10.1039/C5PY01473E">https://doi.org/10.1039/C5PY01473E</a> IF = 4.6 (2022)
- (P. Murto, <u>A. Minotto</u>)\*, A. Zampetti, X. Xu, M.R. Andersson, F. Cacialli, E. Wang
  "Triazolobenzothiadiazole-based Copolymers for Polymer Light-Emitting Diodes: Pure Near-Infrared Emission via
  Optimized Energy and Charge Transfer"

  Advanced Optical Materials 4, 2068 (2016) https://doi.org/10.1002/adom.201600483 IF = 9.0 (2022)
- M. Righetto, <u>A. Minotto</u>, R. Bozio
   "Bridging Energetics and Dynamics of Exciton Trapping in Core-Shell Quantum Dots"
   *Journal of Physical Chemistry C* 121, 896 (2017) <a href="https://doi.org/10.1021/acs.jpcc.6b10146">https://doi.org/10.1021/acs.jpcc.6b10146</a> IF = 3.7 (2022)
   A. Zampetti, <u>A. Minotto</u>, B.M. Squeo, V. G. Gregoriou, S. Allard, U. Scherf, C.L. Chochos, F. Cacialli
- A. Zampetti, A. Minotto, B.M. Squeo, V. G. Gregoriou, S. Allard, U. Scherf, C.L. Chochos, F. Cacialli "Highly Efficient Solid-State Near-infrared Organic Light-Emitting Diodes incorporating A-D-A Dyes based on unsubstituted "BODIPY" Moieties"
   Scientific reports 7, 1611 (2017) https://doi.org/10.1038/s41598-017-01785-2 IF = 4.6 (2022)
- R. Bozio, M. Righetto, <u>A. Minotto</u>
   "Effects of surface and interface traps on exciton and multi-exciton dynamics in core/shell quantum dots"
   Proc. SPIE 10348, Physical Chemistry of Semiconductor Materials and Interfaces XVI; (2017) Proceeding
- 12. (<u>A. Minotto</u>, P. Murto)\* at al. "Efficient Near-Infrared Electroluminescence at 840 nm with "Metal-Free" Small-Molecule: Polymer Blends" *Advanced Materials* 30, 1706584 (2018) – <a href="https://doi.org/10.1002/adma.201706584">https://doi.org/10.1002/adma.201706584</a> • IF = 29.4 (2022)
- 13. S. Baysec, A. Minotto, P. Klein, S. Poddi, A. Zampetti, S. Allard, F. Cacialli, U. Scherf "Tetraphenylethylene-BODIPY aggregation-induced emission luminogens for near-infrared polymer light-emitting diodes"
- **Science China Chemistry** 61, 932 (2018) <a href="https://doi.org/10.1007/s11426-018-9306-2">https://doi.org/10.1007/s11426-018-9306-2</a> IF = 9.6 (2022) 14. V. Robbiano, S. Surdo, **A. Minotto**, et al.
- "C-Si hybrid photonic structures by full infiltration of conjugated polymers into porous silicon rugate filters"

  Nanomaterials and Nanotechnology, 8, 1 (2018) <a href="https://doi.org/10.1177/1847980418788404">https://doi.org/10.1177/1847980418788404</a> IF = 3.7 (2022)
- 15. REVIEW (A. Zampetti, A. Minotto)\*, F. Cacialli
  "Near-Infrared (NIR) Organic Light-Emitting Diodes (OLEDs): Challenges and Opportunities"

  Advanced Functional Materials 29, 1807623 (2019) https://doi.org/10.1002/adfm.201807623 IF = 19 (2022)
- A. Burton, A. Minotto, P. A. Haigh, Z. Ghassemlooy, F. Cacialli, I. Darwazeh, H. Le Minh "Optoelectronic Modelling, Circuit Design and Modulation for Polymer-Light Emitting Diodes for Visible Light Communication Systems"
  - International Conference on Telecommunications (2019) Proceeding
- 17. P. A. Haigh, <u>A. Minotto</u>, et al.
  - "Experimental Demonstration of Staggered CAP Modulation for Low Bandwidth red-emitting Polymer-LED based Visible Light Communications"
  - IEEE International Conference on Communications Workshops (2019) Proceeding
- 19. M. Zheng, F. Lamberti, L. Franco, E. Collini, I. Fortunati, G. Bottaro, G. Daniel, R. Sorrentino, <u>A. Minotto</u>, et al. "A film-forming graphene/diketopyrrolopyrrole covalent hybrid with far-red optical features: Evidence of photostability"
  - Synthetic Metals 258, 116201 (2019) https://doi.org/10.1016/j.synthmet.2019.116201 IF = 4.4 (2022)

20. P. A. Haigh, P. Chvojka, A. Minotto et al. "Strategies for organic VLC: Effects of clipping on the performance of multi-band CAP modulation with polymerbased light-emitting diodes"

European Conference on Optical Communication (2019), Proceeding

- A. Minotto, P. A. Haigh, Ł. Łukasiewicz, E. Lunedei, D. T. Gryko, I. Darwazeh, F. Cacialli Visible Light Communications with Efficient Far-Red/Near-infrared Polymer Light-emitting Diodes"
- Light: Science & Applications 9, 70 (2020) <a href="https://doi.org/10.1038/s41377-020-0314-z">https://doi.org/10.1038/s41377-020-0314-z</a> IF = 19.4 (2022)
   G. Albano, L. A. Aronica, A. Minotto, F. Cacialli, L. Di Bari
   "Chiral oligothiophenes with remarkable circularly polarized luminescence and electroluminescence in thin films" Chemistry – A European Journal 26, 16662 (2020) – https://doi.org/10.1002/chem.202003547 - IF = 4.3 (2022)
- 23. J. Royakkers, A. Minotto, D. Congrave, W. Zeng, A. Hassan, A. Leventis, F. Cacialli, H. Bronstein Suppressing Solid-State Quenching in Red Emitting Conjugated Polymers" Chemistry of Materials 32, 10140 (2020) - https://doi.org/10.1021/acs.chemmater.0c03604 - IF = 8.6 (2022)
- 24. P. Chvojka, P. A. Haigh, A. Minotto et al "Expanded Multiband Super-Nyquist CAP Modulation for Highly Bandlimited Organic Visible Light Communications" IEEE Systems Journal 14, 2544-2550 (2020) - https://doi.org/10.1109/JSYST.2019.2939026 - IF = 4.4 (2022)
- 25. J. Royakkers, A. Minotto, et al. "Doubly Encapsulated Perylene Diimides: Effect of Molecular Encapsulation on Photophysical Properties" The Journal of Organic Chemistry 85, 207-214 (2020) - <a href="https://doi.org/10.1021/acs.joc.9b02597">https://doi.org/10.1021/acs.joc.9b02597</a> - IF = 3.6 (2022)
- A. Minotto, I. Bulut, A. G. Rapidis, G. Carnicella, M. Patrini, E. Lunedei, H. L. Anderson, F. Caciall "Towards efficient near-infrared fluorescence" Light: Science & Applications 10, 18 (2021) - https://doi.org/10.1038/s41377-020-00456-8 - IF = 19.4 (2022)
- 27. J. Shaikh, D. Congrave, A. Forster, A. Minotto, et al. "Intrinsic photogeneration of long-lived charges in a donor-orthogonal acceptor conjugated polymer" Chemical Science 12, 8165-8177 (2021) - https://doi.org/10.1039/D1SC00919B - IF = 8.4 (2022)
- REVIEW K. Guo, M. Righetto, A. Minotto, A. Zampetti, F. Cacialli "Non-toxic Non-toxic near-infrared light-emitting diodes" iScience 24, 102545 (2021) - https://doi.org/10.1016/j.isci.2021.102545 - IF = 5.8 (2022)
- 29. Z. Chen, V. Robbiano, G. M. Paternò, G. Carnicella, A. Debrassi, A. A. La Mattina, S. Mariani, A. Minotto et al. "Nanoscale Photoluminescence Manipulation in Monolithic Porous Silicon Oxide Microcavity Coated with Rhodamine-Labeled Polyelectrolyte via Electrostatic Nanoassembling"
- Advanced Optical Materials 9, 2100036 (2021) https://doi.org/10.1002/adom.202100036 IF = 9.0 (2022) J. Royakkers, K. Guo, D. T. W. Toolan, L. Feng, A. Minotto et al. "Molecular Encapsulation of Naphthalene Diimide (NDI) Based π-Conjugated Polymers: A Tool for Understanding

Photoluminescence" Angewandte Chemie 60, 25005-25012 (2021) - https://doi.org/10.1002/adom.202100036 - IF = 16.6 (2022)

- 31. G. F. Cotella, A. Bonasera, G. Carnicella, A. Minotto, S. Hecht, F. Cacialli Diarylethenes in Optically Switchable Organic Light-Emitting Diodes: Direct Investigation of the Reversible Charge Carrier Trapping Process"

  Advanced Optical Materials 10, 2101116 (2022) – <a href="https://doi.org/10.1002/adom.202101116">https://doi.org/10.1002/adom.202101116</a> - IF = 9.0 (2022)
- 32. L. Tejerina, A. G. Rapidis, M. Rickhaus, P. Murto, Z. Genene, E. Wang, A. Minotto, H. L. Anderson, F. Cacialli "A porphyrin pentamer as a bright emitter for NIR OLEDs" Journal of Materials Chemistry C 10, 5929-5933 (2022) - https://doi.org/10.1039/D1TC05951C - IF = 6.4 (2022)
- 33. INVITED EDITORIAL IN NATURE PHOTONICS ("News & Views" section):

A. Minotto
"Efficient emitters in the NIR-II window"

Nature Photonics 16, 812–813 (2022) - https://doi.org/10.1038/s41566-022-01109-5 - IF = 35.0 (2022)

34. A. Pancaldi, L. Raimondo, A. Minotto, A. Sassella "Post-Growth Dynamics and Growth Modeling of Organic Semiconductor Thin Films" Langmuir 39, 3266-3272 (2023) - https://doi.org/10.1021/acs.langmuir.2c03066 - IF = 3.9 (2022)

### **Granted patents & published patent applications**

A. Minotto, V. Berryman-Bousquet

"Light-emitting device including mixtures of different quantum dots"

US Patent 11,653,514 B2 (filed on May 18, 2021 // granted on May 16, 2023)

A. Minotto, A. Zampetti, V. Berryman-Bousquet

"Photo-lithographed array of light-emitting and light-converting devices"

US Patent Application 17/377,655 (filed on Jul 16, 2021 // published on Jan 19, 2023: US 2023/0018862 A1)

H. Hopkin, V. Berryman-Bousquet, A. Kay, A. Yudin, A. Minotto

"Uv-patterned conductive polymer electrode for gled"

US Patent Application 17/390,246 (filed on Jul 30, 2021 // published on Feb 2, 2023; US 2023/0037057 A1)

<sup>\*</sup> These authors contributed equally

### Works/proposals under review/in preparation

- 1 filed patent application, awaiting publication.
- 2 research articles on singlet exciton fission in rubrene crystalline thin films in preparation.
- 1 proposal submitted (PRIN PNRR 2022, as participant) awaiting for results.

# **CONFERENCES (AS OF 24/07/2023)**

- POSTER: CFN Summer School on Nanonophotonics, 10-13/09/2012 (Bad Herrenalb, Germany), "CdSe/CdxZn1-xS graded QDs: influence of the outer shell on the optical properties"
- POSTER: NANOTECHITALY2013, 27-28/11/2013 (Venezia, Italy), "SERS Investigation on CdSe Based Core-Shell Quantum Dots Interfaces"
- 3. POSTER: QD2014, 8<sup>th</sup> International conference on quantum dots, 11-16/5/2014 (Pisa, Italy), "The effect of core-shell interfaces on the optical properties of CdSe-CdXZn1-XS quantum dots"
- 4. ORAL PRESENTATION: SPIE Optics + Photonics Nanophotonic Materials XI, 17-21/8/2014 (San Diego, USA), "Influence of core-shell interfaces on exciton and multi-exciton dynamics of CdSe-CdZnS quantum dots"
- 5. POSTER: ECME, 13<sup>th</sup> European Conference of Molecular Electronics, 1-5/9/2015 (Strasbourg, France), "Polyanthracene-porphyrin complexes as active materials for novel NIR-OLEDs"
- 6. ORAL PRESENTATION: The Rank Prize Funds: Symposium on Exciton Processes in Molecular Materials, 21-24/9/2015 (Grasmere, UK),
  - "Near-infrared (NIR) OLEDs: challenges and opportunities"
- POSTER: London Polymer Meeting, 13/4/2016 (London, UK) "Efficient NIR OLEDs based on metal-free low-gap moieties"
- 8. ORAL PRESENTATION: ITN OSNIRO workshop, 27-28/9/2016 (Eindhoven, NL) "Approaches for increasing OLEDs efficiency"
- ORAL PRESENTATION (INVITED): International School "Optical characterization of photonic structures" ETN Marie–Curie Synchronics, 6-8/6/2017 (Pisa, IT)
   "Organic Near-infrared LEDs"
- ORAL PRESENTATION: OP 2017 The12th International Conference on Optical Probes of Organic and Hybrid Semiconductors 19-23/6/2017 (Quebec City, CAN)
   "Efficient Near-infrared Polymer LEDs based on Porphyrin Oligomers"
- 11. ORAL PRESENTATION: E-MRS 2017 Fall meeting, 18-21/9/2017 (Warsaw, PL) "Efficient near-infrared polymer LEDs based on a "heavy-metal-free" active layer"
- 12. ORAL PRESENTATION: É-MRS 2018 Spring meeting, 18-22/6/2018 (Strasbourg, FR)
- "AIE luminogens for polymer light-emitting diodes"

  13. POSTER: London Light Showcase King's College, 16/1/2019 (London, UK)
- "Porphyrin Hexamers as Highly Efficient Near-Infrared Emitters for Polymer Light-Emitting Diodes"

  14. ORAL PRESENTATION: OP 2019, The 13th International Conference on Optical Probes of Organic and Hybrid
  - Optoelectronic Materials and Applications, 7-12/7/2019 (Vilnius, LT)

    "Efficient Far-red/Near-infrared Polymer Light-emitting Diodes Incorporating a Diketopyrrolopyrrole Derivative"
- 15. POSTER (x2): IPOE 2022, 3rd International Conference on Interface Properties In organic and Hybrid Electronic: Perspectives & Key Challenges, 13-16/6/2022 (Malaga, ES)
  - a. "Unveiling the robustness of porphyrin crystalline nanowires towards aggressive chemicals"
  - b. "Tuning the Growth of Metallo-Porphyrin Nanostructures"
- ORAL PRESENTATION: ICOE 2023, 16th edition of the International Conference on Organic Electronics, 3-7/7/2023 (Madrid, ES)
  - "Singlet Exciton Fission as a Probe of the Amorphous-to-Crystal Transition in Rubrene Thin Films"